
Introduction to the Standard Model
William and Mary PHYS 771 Spring 2014

Instructor: André Walker-Loud, walkloud@wm.edu
(Dated: May 13, 2014 21:07)

Class information, including syllabus and homework assignments can be found at
http://ntc0.lbl.gov/~walkloud/wm/courses/PHYS_771/

Homework Assignment 1

1. [5 pts.] We are primarily using the “mostly minus” metric, gµν = diag(1,−1,−1,−1).
With this metric, the field strength tensor for a classical electromagnetic field is

Fµν =


0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

 (1)

which can be compactly expressed as F0i = Ei and Fij = −εijkBk.

Solutions: It makes sense to solve (b) first, then (a). To begin, we note, in the mostly
plus metric,

Aµ = (φ, ~A)T , ∂µ =

(
∂

∂t
, ~∇
)T

,

Aµ = (−φ, ~A)T , ∂µ =

(
− ∂

∂t
, ~∇
)T

.

From here, we can determine:

(b) Express the space-time F0i and space-space Fij components in terms of Ei and
Bi.

[3 pts.]Solution:

F0i = ∂0Ai − ∂iA0

=
∂

∂t
Ai −∇i(−φ)

= −Ei

And the space-space components are

Fij = ∇iAj −∇jAi

= εijkBk

(a) Beginning with Fµν = ∂µAν − ∂νAµ, derive the form of Fµν if we work with the
“mostly plus” metric, gµν = diag(−1, 1, 1, 1).
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[2 pts.]Solution: From (b), we can immediately read off

Fµν =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 (2)

2. [10 pts.] We discussed using the covariant derivative to construct the field strength
tensors for gauge theories, igFµν = [Dµ, Dν ]. Suppose we have a fermion that is a
doublet that transforms as

ψ(x) =

(
ψ1(x)
ψ2(x)

)
, ψ(x)→ eiα

a(x)taψ(x), with ta =
σa

2
, σa = Pauli matrices (3)

such that the covariant derivative is

Dµ = ∂µ + igAµ(x) Aµ(x) = taAaµ(x) (4)

(a) Derive the field strength tensor. You may find it useful to determine the compo-
nents igF a

µν = [Dµ, Dν ]
a instead of Fµν = F a

µνt
a.

[5 pts.] Solution:

[Dµ, Dµ] = [∂µ + igAµ, ∂ν + igAν ]

= ig(∂µAν − ∂νAµ + ig[Aµ, Aν ])

The commutator of A-fields is

[Aµ, Aν ] = AaµA
b
ν [t

a, tb]

= AaµA
b
νiε

abctc

and so the field strength tensor is

Fµν = ∂µAν − ∂νAµ − gεabctcAaµAbν .
We can project onto the a-th component using tr[tatb] = δab/2, and after re-
labeling dummy indices, we can write

F a
µν ≡ 2tr[taFµν ] = ∂µA

a
ν − ∂νAaµ − gεabcAbµAcν .

(b) In terms of the Aa fields, what is the form of the Lagrangian

L = −1

2
tr[F 2

µν ] = −1

4
(F a

µν)
2 =? (5)

[5 pts.]Solution:

(F a
µν)

2 ≡ F a
µνF

a,µν

= (∂µA
a
ν − ∂νAaµ − gεabcAbµAcν)(∂µAa,ν − ∂νAa,µ − gεadeAd,µAe,ν)

Relabeling the dummy indices, using the symmetry properties of εabc and the
equality εabcεade = δbdδce − δbeδcd, we find

L = −1

4

[
(∂µA

a
ν − ∂νAaµ)(∂µAa,ν − ∂νAa,µ)− 4gεabcAbµA

c
ν∂

µAa,ν

+ g2(AaµA
a,µAbνA

b,ν − AaµAa,νAb,µAbν)
]
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3. [5 pts.] For a classic electromagnetic field, Eq. (1),

(a) What is FµνF
µν = ?

[2 pts.] Solution:

FµνF
µν = F0iF

0i + Fi0F
i0 + FijF

ij

= −2E2
i − εijkBk(−εijlBl)

= 2(B2 − E2)

(b) What is εµνρσFµνFρσ = ? (with the convention ε0123 = +1)

[3 pts.] Solution: With this convention, we can replace ε0ijk = εijk, εi0jk = −εijk
etc. We then have

εµνρσFµνFρσ = εijk(F0iFjk − Fi0Fjk + FijF0k − FijFk0)
= 2εijk(F0iFjk + FijF0k)

= 4εijkF0iFjk

= 4Eiε
ijk(−εjkhBh)

= −8E ·B

4. [5 pts.] For U(λ) = eiλαaXa where Xa are the generators of a Lie Algebra,

(a) show U(λ1)U(λ2) = U(λ1 + λ2)

Solution: The crucial step is to realize [αaXa, αbXb] = 0 which is easy to show

[αaXa, αbXb] = αaαb[Xa, Xb]

=

(
1

2
{αa, αb}+

1

2
[αa, αb]

)
[Xa, Xb]

=
1

2
{αa, αb}[Xa, Xb]

= 0

which all follows from symmetry/anti-symmetry. The vanishing commutation
relation implies

eiλ1αaXaeiλ2αaXa = ei(λ1+λ2)αaXa

and hence U(λ1)U(λ2) = U(λ1 + λ2).

5. [5 pts.] For SU(2), what is the matrix form of the generators

Solution: For any representation, we know the “ladder” operators span the space

J±|jm〉 = c±jm|jm± 1〉 , c±jm =
√
j(j + 1)−m(m± 1)

and that

[J+, J−] = 2J3 , J± = J1 ± iJ2 .
These ladder operators can be easily constructed in a given representation by beginning
with the lowest/maximum state, and raising/lowering it. The above relations can then
be used to construct the generators.
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(a) for the j = 1 representation?

[3 pts.] Solution:

J+ =

0
√

2 0

0 0
√

2
0 0 0

 , J− =

 0 0 0√
2 0 0

0
√

2 0

 ,

from which we get

J3 =

1 0 0
0 0 0
0 0 −1

 , J1 =
1√
2

0 1 0
1 0 1
0 1 0

 , J2 =
i√
2

0 −1 0
1 0 −1
0 1 0

 .

(b) for the j = 3/2 representation?

[2 pts.] Solution:

J+ =


0
√

3 0 0
0 0 2 0

0 0 0
√

3
0 0 0 0

 , J− =


0 0 0 0√
3 0 0 0

0 2 0 0

0 0
√

3 0

 ,

from which we get

J3 =
1

2


3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

 , J1 =
1

2


0
√

3 0 0√
3 0 2 0

0 2 0
√

3

0 0
√

3 0

 , J2 =
i

2


0 −

√
3 0 0√

3 0 −2 0

0 2 0 −
√

3

0 0
√

3 0

 .

6. [10 pts.] Dirac algebra. In any representation, the Dirac matrices satisfy the algebra
(in 4 dimensions)

{γµ, γν} = 2gµν × 14×4 . (6)

In class, we defined the Dirac matrices in the “Dirac Basis”, for which

γ0D =

(
12×2 0

0 −12×2

)
, γiD =

(
0 σi

−σi 0

)
, γ5D =

(
0 12×2

12×2 0

)
, γ5 ≡ iγ0γ1γ2γ3.

(7)

Another useful and very common basis is the “chiral basis” (or Weyl basis) in which

γ0χ =

(
0 12×2

12×2 0

)
, γiχ =

(
0 σi

−σi 0

)
, γ5χ =

(
−12×2 0

0 12×2

)
, (8)

(a) Determine the similarity transformation which converts from the Dirac to chiral
basis

γχ = SγDS
−1 S = ? (9)

[4 pts.]Solution: This is simply a matter of diagonalizing γ5D and using the
eigenvectors to construct the rotation matrix. The only trick is to make sure we
preserve the sign convention of the γiD = γiχ matrices. One finds

S =
1√
2

(
1 −1
1 1

)
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(b) What is the similarity transformation that transforms from the chiral to Dirac
basis?

[2 pts.]Solution: This is simply given by S−1, as γ5D = S−1Sγ5DS
−1S:

S−1 = ST =
1√
2

(
1 1
−1 1

)
(c) In both the Dirac and chiral basis, in terms of the spinor components, what are

ψ± =
1± γ0

2
ψ = ? (10)

[2 pts.]Solution: If we write ψT = (ψ1, ψ2, ψ3, ψ4) then we have

Dirac : ψ+ =


ψ1

ψ2

0
0

 ψ− =


0
0
ψ3

ψ4



Chiral : ψ+ =
1

2


ψ1 + ψ3

ψ2 + ψ4

ψ1 + ψ3

ψ2 + ψ4

 ψ− =
1

2


ψ1 − ψ3

ψ2 − ψ4

−ψ1 + ψ3

−ψ2 + ψ4


(d) In both the Dirac and chiral basis, in terms of the spinor components, what are

ψR =
1 + γ5

2
ψ = ?

ψL =
1− γ5

2
ψ = ? (11)

[2 pts.]Solution:

Dirac : ψR =
1

2


ψ1 + ψ3

ψ2 + ψ4

ψ1 + ψ3

ψ2 + ψ4

 ψL =
1

2


ψ1 − ψ3

ψ2 − ψ4

−ψ1 + ψ3

−ψ2 + ψ4



Chiral : ψR =


0
0
ψ3

ψ4

 ψL =


ψ1

ψ2

0
0


7. [35 pts.] In class, we discussed the g-factor for the electron and the nucleons. We saw

in general, the elastic electromagnetic structure of a fermion, with parity conserving
interactions, can be expressed as

ū(p′)Γµ(p′, p)u(p) = ū(p′)

[
γµF1(q

2) +
iσµνqν

2m
F2(q

2)

]
u(p), q = p′ − p, (12)
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pp′

q

p− k

FIG. 1: The Feynman diagram used to compute g − 2 of a point fermion.

where u(p) is an on-shell fermion spinor which satisfies p/u(p) = mu(p) and σµν ≡
i
2
[γµ, γν ]. This is the “elastic” structure, because ū(p′) also represents an on-shell

fermion satisfying ū(p)p/ = ū(p)m.

In the case of the electron (point-like fermion) we saw the Dirac equation gives g =
2 +

αf.s.

π
. We noted that for the nucleons, gp ' 5.58 and gn = −3.83 so that the

nucleons are not perturbatively close to point-like fermions, one indication they have
interesting internal structure. We commented in class that g = 2[F1(0) + F2(0)] and
so for the electron, F2(0) =

αf.s.

2π
.

Perform this classic QED calculation, using tools you have been learning in QFT, see
Fig. 1. This calculation is so classic, you can easily find the solution in the literature.
I strongly encourage you to attempt it on your own, before resorting external sources,
peers, books, etc.. The key to successfully performing this calculation is to realize
you isolate the contribution which is proportional to ū(p′)σµνqνu(p). It turns out,
this contribution to the diagram in Fig. 1 is free of both Ultraviolet (UV) (q2E → ∞)
and Infrared (IR) (q2E → 0) singularities (where qE is the Euclidean four-momentum
obtained after Wick rotation of the momentum integral). To this end, recall the
Gordon Identity which can be used to relate ū(p′)(p′ + p)µu(p) to ū(p′)σµνqνu(p).

(a) Compute g − 2 for the electron

[20 pts.]Solution: See attached hand notes.

(b) Using just the requirements we have of our QFT, QED (renormalizable, gauge-
invariant, Lorentz invariatn QFT in 4 space-time dimensions) why should you
know ahead of time that the contribution to g − 2 is free of both UV and IR
singularities?

[5 pts.] Solution: UV See attached hand notes.

[10 pts.] Solution: IR See attached hand notes.





























k_mu = Q (1,0,0,1)
so we can also let Q —> 0
to get the divergence
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